Corrections

Identification of the Zinc Ligands in Cobalamin-Independent Methionine Synthase (MetE) from *Escherichia coli*, by Zhaohui S. Zhou, Katrina Peariso, James E. Penner-Hahn, and Rowena G. Matthews*, Volume 38, Number 48, November 30, 1999, pp 15915–15926.

Page 15918. A typographical error in the paper by J. B. Hunt et al. [(1985) *Anal. Biochem. 146*, 150–157] led us to misinterpret the published value of K_A for formation of $\text{Zn} \cdot (\text{PAR})_2$ complexes at pH 7.0. That value should be 2.2 \times 10¹² M⁻².

Equations 2 and 4 should read as follows:

$$K_{\text{a(PAR)}} = [\text{Zn(PAR)}_2]/([\text{Zn}_{\text{free}}][\text{PAR}_{\text{free}}]^2)$$
 (2)

$$\begin{split} \textit{K}_{a}(\text{MetE}) &= (\textit{K}_{a(\text{PAR})}[\text{Zn-MetE}][\text{PAR}_{\text{free}}]^{2}) / \\ & ([\text{Zn}(\text{PAR})_{2}][\text{MetE}_{\text{apo}}]) \ \, (4) \end{split}$$

Page 15920. The revised values for the zinc association constants, calculated using these equations, are listed in Table 2.

Table 2: Zinc Content, Zinc Association Constants (K_a) , and Specific Activities for the MetE Proteins

1			
	Zn per mole of protein ^a	K_a of Zn with MetE (M ⁻¹)	specific activity (µmol min ⁻¹ mg ⁻¹)
wild-type His641Gln Cys634Ser Cys726Ser	1.0 0.3-0.4 0.8-0.9 0.4-0.7	$>10^{12}$ 1.3×10^{10} 5.7×10^{9} 1.4×10^{10}	0.27 0.0004 not detectable ^b 0.0007

Because PAR cannot extract zinc from the wild-type enzyme in the absence of added mercurials, we conservatively estimate that its K_A is greater than the K_A for formation of Zn•PAR₂ complexes at pH 7.0.

We thank Tom O'Halloran (Northwestern University, Evanston, IL) for calling our attention to this error.

BI015148P 10.1021/bi015148p Published on Web 10/10/2001